
Confidential

SMART CONTRACT AUDIT REPORT

for

Polynomial Earn (v2)

Prepared By: Patrick Lou

PeckShield
July 31, 2022

1/19 PeckShield Audit Report #: 2022-295

contact@peckshield.com

Confidential

Document Properties

Client Polynomial
Title Smart Contract Audit Report
Target Polynomial Earn
Version 1.0-rc
Author Xuxian Jiang
Auditors Xiaotao Wu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0-rc July 31, 2022 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 183 5897 7782
Email contact@peckshield.com

2/19 PeckShield Audit Report #: 2022-295

Confidential

Contents

1 Introduction 4
1.1 About Polynomial Earn . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improper Option Settlement in Put/CallSellingVault 11
3.2 Improved Precision in processWithdrawalQueue() 13
3.3 Revisited StrikeId Removal in PutSellingVault . 14
3.4 Trust Issue of Admin Keys . 15

4 Conclusion 17

References 18

3/19 PeckShield Audit Report #: 2022-295

Confidential

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Polynomial Earn (v2) protocol, we outline in the report our systematic approach to evaluate poten-
tial security issues in the smart contract implementation, expose possible semantic inconsistencies
between smart contract code and design document, and provide additional suggestions or recommen-
dations for improvement. Our results show that the given version of smart contracts is well designed
and engineered, though it can be further improved by addressing our suggestions. This document
outlines our audit results.

1.1 About Polynomial Earn

The Polynomial Earn is designed to receive asset from depositors and invest its full asset in a so-
called weekly options strategy. In essence, it sells the newly minted options to Lyra AMM in batches
to collect possible yields. If the option that is sold in the strategy expired out of the money, the
premium is collected and distributed to the depositors. The basic information of the audited protocol
is as follows:

Table 1.1: Basic Information of Polynomial Earn

Item Description
Name Polynomial

Website https://www.polynomial.fi/
Type Solidity Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 31, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/Polynomial-Protocol/earn-contracts-v2.git (4d1b715)

4/19 PeckShield Audit Report #: 2022-295

Confidential

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/Polynomial-Protocol/earn-contracts-v2.git (664e61b)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract

5/19 PeckShield Audit Report #: 2022-295

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/19 PeckShield Audit Report #: 2022-295

Confidential

is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/19 PeckShield Audit Report #: 2022-295

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/19 PeckShield Audit Report #: 2022-295

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Polynomial Earn (v2)

smart contracts. During the first phase of our audit, we study the smart contract source code and
run our in-house static code analyzer through the codebase. The purpose here is to statically identify
known coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We
further manually review business logic, examine system operations, and place DeFi-related aspects
under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 2

Informational 0

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/19 PeckShield Audit Report #: 2022-295

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerability, and 2 low-severity vulnerabilities.

Table 2.1: Key Polynomial Earn Audit Findings

ID Severity Title Category Status
PVE-001 High Improper Option Settlement in Put/-

CallSellingVault
Business Logic Resolved

PVE-002 Low Improved Precision in processWith-
drawalQueue()

Numeric Errors Resolved

PVE-003 Low Revisited StrikeId Removal in Put-
SellingVault

Coding Practices Resolved

PVE-004 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/19 PeckShield Audit Report #: 2022-295

Confidential

3 | Detailed Results

3.1 Improper Option Settlement in Put/CallSellingVault

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: Put/CallSellingVault

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Polynomial Earn protocol has developed a number of vaults, which are used to open, close,
or settle options. While analyzing two these vaults, i,e., PutSellingVault and CallSellingVault, we
notice their option settlement logic can be improved.

To elaborate, we show below the implementation of the _settleOptions() function from the
PutSellingVault contract. As the name indicates, this function iterates the given set of _strikeIds

for settlement. During the settlement, various accounting information is accordingly updated. Specif-
ically, when the option premium is collected, there are two cases: (1) positionData.premiumCollected

> 0 (lines 722-728) and (2) positionData.premiumCollected <=0 (line 729). It comes to our attention
that the second case is not handled properly. In particular, it is currently updated as totalFunds -=

uint256(positionData.premiumCollected) (line 729), which should be revised as totalFunds -= uint256

(-positionData.premiumCollected).

692 function _settleOptions(uint256 [] memory _strikeIds) internal {
693 for (uint256 i = 0; i < _strikeIds.length; i++) {
694 PositionData storage positionData = positionDatas[_strikeIds[i]];
695
696 if (positionData.amount == 0) {
697 revert ExpectedNonZero ();
698 }
699
700 OptionToken.PositionState optionState = OPTION_TOKEN.getPositionState(

positionData.positionId);

11/19 PeckShield Audit Report #: 2022-295

Confidential

701 if (optionState != OptionToken.PositionState.SETTLED) {
702 revert OptionNotSettled(_strikeIds[i], positionData.positionId ,

optionState);
703 }
704
705 (
706 uint256 strikePrice ,
707 uint256 priceAtExpiry ,
708) = MARKET.getSettlementParameters(_strikeIds[i]);
709
710 if (priceAtExpiry == 0) {
711 revert InvalidExpiryPrice ();
712 }
713
714 uint256 ammProfit = (priceAtExpiry < strikePrice) ? (strikePrice -

priceAtExpiry).mulWadDown(positionData.amount) : 0;
715
716 if (ammProfit > 0) {
717 totalFunds -= ammProfit;
718 }
719
720 usedFunds -= positionData.collateral;
721
722 if (positionData.premiumCollected > 0) {
723 uint256 profit = uint256(positionData.premiumCollected);
724 uint256 perfFees = profit.mulWadDown(performanceFee);
725 ERC20(SUSD).safeTransfer(feeReceipient , perfFees);
726 totalFunds += (profit - perfFees);
727 totalPremiumCollected -= profit;
728 } else {
729 totalFunds -= uint256(positionData.premiumCollected);
730 }
731
732 emit SettleOption(
733 _strikeIds[i],
734 positionData.positionId ,
735 positionData.amount ,
736 positionData.collateral ,
737 positionData.premiumCollected ,
738 ammProfit
739);
740
741 positionData.premiumCollected = 0;
742 positionData.amount = 0;
743 positionData.collateral = 0;
744
745 _removeStrikeId(_strikeIds[i]);
746 }
747 }

Listing 3.1: PutSellingVault::_settleOptions()

Note the CallSellingVault::_settleOptions() routine shares a similar issue.

12/19 PeckShield Audit Report #: 2022-295

Confidential

Recommendation Improve the above routines to allow for proper option settlement.

Status This issue has been fixed in the following commit: 664e61b.

3.2 Improved Precision in processWithdrawalQueue()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Put/CallSellingVault

• Category: Numeric Errors [8]

• CWE subcategory: CWE-190 [2]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss scenario.

In particular, we use the PutSellingVault::processWithdrawalQueue() as an example. This rou-
tine is used to process withdrawal requests in the pending queue. For each withdrawal request, for
the given withdrawnTokens, we notice the current logic computes the susdToReturn amount as fol-
lows: susdToReturn = current.withdrawnTokens.mulWadDown(tokenPrice). For improved precision, the
amount can be revised as susdToReturn = current.withdrawnTokens.mulWadUp(tokenPrice).

293 function processWithdrawalQueue(uint256 idCount) external nonReentrant {
294 for (uint256 i = 0; i < idCount; i++) {
295 uint256 tokenPrice = getTokenPrice ();

297 QueuedWithdraw storage current = withdrawalQueue[queuedWithdrawalHead];

299 if (block.timestamp < current.requestedTime + minWithdrawDelay) {
300 return;
301 }

303 uint256 availableFunds = totalFunds - usedFunds;

305 if (availableFunds == 0) {
306 return;
307 }

309 uint256 susdToReturn = current.withdrawnTokens.mulWadDown(tokenPrice);
310 ...
311 }

13/19 PeckShield Audit Report #: 2022-295

https://github.com/Polynomial-Protocol/earn-contracts-v2/commit/664e61b

Confidential

312 }

Listing 3.2: PutSellingVault::processWithdrawalQueue()

Note that the resulting precision loss may be just a small number, but it plays a critical role when
certain boundary conditions are met. And it is always the preferred choice if we can avoid the pre-
cision loss as much as possible. Note other routines share the same issue, including CallSellingVault::

processWithdrawalQueue(), CallSellingVault::_closeShortPosition(), and PutSellingVault::_closeShort

Position().

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status This issue has been fixed in the following commit: 664e61b.

3.3 Revisited StrikeId Removal in PutSellingVault

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Put/CallSellingVault

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

In Polynomial Earn, each vault may manage multiple strikes and each strike has its unique strikeId.
And the set of active strikeIds is managed in a storage array liveStrikes. While analyzing the logic
to add a new strikeId into liveStrikes or remove an existing one, we notice the current removal
logic can be improved.

To elaborate, we show below the _removeStrikeId() function. It has a rather straightforward logic
in locating the index of the to-be-removed strikeId and then switching the located index with the
last element in the array. It comes to our attention it also overwrites the last element (line 820)
before immediately popping out the last element (line 821). Since the last element is immediately
popped out, there is no need to overwrite it in the first place. Note it also affects the same function
from the PutSellingVault contract.

809 function _removeStrikeId(uint256 _strikeId) internal {
810 uint256 i;
811 uint256 n = liveStrikes.length;
812 for (i = 0; i < n; i++) {
813 if (_strikeId == liveStrikes[i]) {
814 break;
815 }
816 }

14/19 PeckShield Audit Report #: 2022-295

https://github.com/Polynomial-Protocol/earn-contracts-v2/commit/664e61b

Confidential

817
818 if (i < n) {
819 liveStrikes[i] = liveStrikes[n - 1];
820 liveStrikes[n - 1] = _strikeId;
821 liveStrikes.pop();
822 }
823 }

Listing 3.3: CallSellingVault::_removeStrikeId()

Recommendation Simplify the above _removeStrikeId() as follows:

809 function _removeStrikeId(uint256 _strikeId) internal {
810 uint256 i;
811 uint256 n = liveStrikes.length;
812 for (i = 0; i < n; i++) {
813 if (_strikeId == liveStrikes[i]) {
814 break;
815 }
816 }
817
818 if (i < n) {
819 liveStrikes[i] = liveStrikes[n - 1];
820 liveStrikes.pop();
821 }
822 }

Listing 3.4: Revised CallSellingVault::_removeStrikeId()

Status This issue has been fixed in the following commit: 664e61b.

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [3]

Description

In the Polynomial Earn protocol feature, there are privileged accounts (owner and Auth) who play
a critical role in governing and regulating the system-wide operations (e.g., parameter setting and
option selling). It also has the privilege to control or govern the flow of assets managed by this
protocol. Our analysis shows that the privileged account needs to be scrutinized. In the following,
we examine the privileged account and the related privileged accesses in current contracts.

15/19 PeckShield Audit Report #: 2022-295

https://github.com/Polynomial-Protocol/earn-contracts-v2/commit/664e61b

Confidential

551 /// @notice Set Synthetix Volume Program Tracking Code
552 /// @param _code New tracking code
553 function setSynthetixTracking(bytes32 _code) external requiresAuth {
554 emit UpdateSynthetixTrackingCode(synthetixTrackingCode , _code);
555 synthetixTrackingCode = _code;
556 }

558 /// @notice Set Minimum deposit amount
559 /// @param _minAmt Minimum deposit amount
560 function setMinDepositAmount(uint256 _minAmt) external requiresAuth {
561 emit UpdateMinDeposit(minDepositAmount , _minAmt);
562 minDepositAmount = _minAmt;
563 }

565 /// @notice Set Deposit and Withdrawal delays
566 /// @param _depositDelay New Deposit Delay
567 /// @param _withdrawDelay New Withdrawal Delay
568 function setDelays(uint256 _depositDelay , uint256 _withdrawDelay) external

requiresAuth {
569 emit UpdateDelays(minDepositDelay , _depositDelay , minWithdrawDelay ,

_withdrawDelay);
570 minDepositDelay = _depositDelay;
571 minWithdrawDelay = _withdrawDelay;
572 }

Listing 3.5: Example Privileged Operations in CallSellingVault

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a DAO-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system
parameters, which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed. The team confirms that a multi-sig account will be used
to perform these privileged actions.

16/19 PeckShield Audit Report #: 2022-295

Confidential

4 | Conclusion

In this audit, we have analyzed the Polynomial Earn (v2) design and implementation. The Polynomial

Earn is designed to receive asset from depositors and invest its full asset in a so-called weekly options
strategy. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

17/19 PeckShield Audit Report #: 2022-295

Confidential

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

18/19 PeckShield Audit Report #: 2022-295

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Confidential

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

19/19 PeckShield Audit Report #: 2022-295

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Polynomial Earn
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improper Option Settlement in Put/CallSellingVault
	Improved Precision in processWithdrawalQueue()
	Revisited StrikeId Removal in PutSellingVault
	Trust Issue of Admin Keys

	Conclusion
	References

